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Abstract

We study the theoretical implications of cointegrated stock prices on the profitability of pairs

trading strategies. If stock returns are fairly weakly correlated across time, cointegration

implies very high Sharpe ratios. To the extent that the theoretical Sharpe ratios are “too

large,” this suggests that either (i) cointegration does not exist pairwise among stocks, and

pairs trading profits are a result of a weaker or less stable dependency structure among stock

pairs, or (ii) the serial correlation in stock returns stretches over considerably longer horizons

than is usually assumed. Empirically, there is little evidence of cointegration, favoring the

first explanation.

I. Introduction

Pairs trading is an investment strategy based on the notion of two stock prices “co-moving”

with each other. If the two prices diverge, a long-short position can be used to profit from

the expected future re-convergence of the prices. Although the pairs can be formed on

fundamental similarities between firms, the modern incarnation of the strategy is typically

based on statistical principles, picking pairs of stocks whose share prices have previously

moved closely together according to some statistical measure. In a seminal study, Gatev,

Goetzmann and Rouwenhorst (2006, GGR henceforth) documented strong and consistent

excess returns for a simple statistical pairs trading strategy, applied to the CRSP universe of

U.S. stocks.1 In econometric terms, the pairwise price patterns that give rise to pairs trading

profits are consistent with the existence of cointegration among stock prices, and the notion

of price cointegration is often used to motivate why pairs trading might be profitable (e.g.,

1Profitability of pairs-trading strategies has also been documented for other stock markets. For instance,
Bowen and Hutchinson (2016) analyze pairs trading on the U.K. equity market and find results similar to
those of GGR. Jacobs and Weber (2015) analyze individual stock data from 34 international markets and find
that pairs-trading profits appear to be a consistent feature across these markets. These studies also show
that pairs-trading returns do not seem to be explained by traditional factors such as market, size, value,
momentum, and reversals. Do and Faff (2010) verify that pairs trading profits persist in U.S. samples dating
after those used in GGR.
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GGR, De Rossi, Jones, Lancetti, Jessop and Sefton (2010), and Ardia, Gatarek, Hoogerheide

and van Dijk (2016)).

The purpose of the current paper is to evaluate whether cointegration among stock

prices is indeed a realistic assumption upon which to justify pairs trading. In particular,

we derive the expected returns and Sharpe ratios of a simple pairs trading strategy, under

the assumption of pairwise cointegrated stock prices, allowing for a flexible specification of

the stochastic process that governs the individual asset prices. Our analysis shows that,

under the typical assumption that stock returns only have weak and fairly short-lived serial

correlations, cointegration of asset prices would result in extremely profitable pairs trading

strategies. In a cointegrated setting, a typical pairs trade might easily have an annualized

Sharpe ratio greater than ten, for a single pair, ignoring any diversification benefits of trading

many pairs simultaneously. Cointegration of stock prices therefore appears to deliver pairs

trading profits that are “too good to be true.”

The existence of cointegration essentially implies that the deviations between two non-

stationary series is stationary.2 The speed at which the two series converge back towards each

other after a given deviation depends on the short-run, or transient, dynamics in the two

processes. If there are relatively long-lived transient shocks to the series, the two processes

might diverge from each other over long periods, although cointegration ensures that they

eventually converge. If the transient dynamics are short-lived, the two series must converge

very quickly, once they deviate from each other. In the latter case, most shocks to the

series are of a permanent nature and therefore subject to the cointegrating restriction, which

essentially says that any permanent shock must affect the two series in an identical manner.

To put cointegration in more economic terms, consider a simple example of two different

car manufacturers. If both of their stock prices are driven solely by a single common factor,

e.g., the total (expected long-run) demand for cars, then the two stock prices could easily

2This informal discussion implicitly assumes that the two process are cointegrated with cointegration
vector (1,−1), but clearly the same basic intuition holds with a vector (1,−γ), where the second series is
multiplied by γ.
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be cointegrated. However, it is more likely that the stock prices depend on firm-specific

demands, which contain not only a common component but also idiosyncratic components.

In this case, the idiosyncratic components of demands will cause deviations between the two

stock prices, and price cointegration would require that the idiosyncratic demands only cause

temporary changes in the stock prices. That is, cointegration imposes the strong restriction

that any idiosyncratic effects must be of a transient nature, such that they do not cause a

permanent deviation between the stock prices of different firms.

In the stock price setting considered here, most price shocks are usually thought to be

of a permanent nature. For instance, under the classical random walk hypothesis, all price

shocks are permanent. Although current empirical knowledge suggests that there are some

transient dynamics in asset prices, these are usually thought to be small and short lived. In

this case, if two stock prices are cointegrated, there is very little scope for them to deviate

from each other over long stretches of time. Thus, when a transient shock causes the two

series to deviate, they will very quickly converge back to each other. Such quick convergence

is, of course, a perfect setting for pairs trading, and gives rise to the outsized Sharpe ratios

implied by the theoretical analysis.

The theoretical analysis thus predicts that cointegration among stock prices leads to

statistical arbitrage opportunities that are simply too large to be consistent with the notion

that markets are relatively efficient, and excess profits reasonably hard to achieve. Or,

alternatively, the serial correlation in stock returns must be considerably longer-lived than is

usually assumed, with serial dependencies stretching at least upwards of six months. However,

such long-lived transient dynamics imply a rather slow convergence of prices in pairs trades,

at odds with the empirical evidence from pairs trading studies (e.g. Engelberg, Gao and

Jagannathan (2009), Do and Faff (2010), and Jacobs and Weber (2015)).

The tension between traditional random walk efficiency and stock price cointegration is

not a new idea, as evidenced by remarks in Granger (1986). Granger’s work was followed

by many empirical studies of cointegration among stock prices, particularly for groups of
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international stock price indexes (e.g., Kasa (1992) and Corhay, Tourani Rad and Urbain

(1993)). Richards (1995) provides a nice summary of this earlier literature, and argues

that there is no empirical evidence of cointegration among international stock indexes, once

appropriate econometric inference is conducted. Our current study contributes to this previous

literature by explicitly quantifying the “profit opportunities” implied by pair-wise cointegration

of asset prices.

In the second part of the paper, we evaluate to what extent there is any support in the

data for the predictions of the cointegrated model. Our main empirical goal is to determine

whether cointegration of stock prices is likely to exist for pairs of stocks where each of the

two stocks in the pair is issued by a different firm. We refer to such pairs formed by stocks

of two different firms as ordinary pairs throughout the paper. The analysis consists of two

parts. First, we calculate empirical Sharpe ratios from the implementation of a pairs trading

strategy similar to that analyzed in GGR. Second, we quantify to what extent the estimated

model parameters are at all close to satisfying the restrictions implied by cointegration.

The empirical analysis is based on stocks traded on the Stockholm stock exchange. A

relatively unique feature of the Swedish stock market, namely the wide-spread use of listed

A- and B- shares, gives rise to a very useful control group of stock pairs. A- and B-shares

of a given company are traded openly on the same exchange, provide identical ownership

fractions, and are claims to the exact same cash flow. The only difference between them is

that A-shares give the holder more votes than the B-shares. Since A- and B-shares of a given

firm are claims to the exact same dividends, their prices are likely to be highly correlated.

In fact, as shown by Bossaerts (1988), one would expect the two prices to be cointegrated.3

The A-B pairs can therefore be seen as a form of control group, for which we would expect

3Bossaerts (1988) derives a general equilibrium model with cointegrated asset prices. However, the key
assumption in his model is that the dividend processes are, in fact, themselves cointegrated, which in turn
implies cointegration among the price processes. The result is therefore not particularly surprising, since
cointegration among dividends effectively implies that, in the long-run, certain asset combinations will be
claims to the same cash flows. That is, from a long-run perspective, the cointegrated assets are essentially
cash-flow equivalent.
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cointegration to hold.4 If we find that the restrictions implied by cointegration are (much)

further away from being satisfied for the ordinary pairs than they are for the control group

of A-B stock pairs, we view this as reasonably convincing evidence that cointegration among

ordinary pairs is unlikely. Again, we would like to emphasize that our main empirical question

is whether cointegration of prices is likely to exist among ordinary (non A-B) pairs of stocks.

The results for the A-B pairs should be viewed as a form of calibration of the empirical

methods, providing a reasonable set of benchmark estimates against which we can compare

the results for the ordinary pairs.

There are two main findings from the empirical analysis. First, before-cost Sharpe ratios

from trading A-B pairs are mostly in line with the predictions of the cointegrated model,

and they are considerably higher than those that can be attained when trading ordinary

pairs.5 Second, the restrictions implied by cointegration are far from being satisfied for all

the possible ordinary pairs, and the parameter estimates are uniformly closer to satisfying

the cointegrating restrictions for all the A-B pairs than for any of the ordinary stock pairs.

The theoretical and empirical analysis together strongly suggest that cointegration is not

a likely explanation for the profitability of pairs trading strategies using ordinary pairs of

stocks. Pairs trading is based on the idea of stock prices co-moving with each other, and that

deviations from this co-movement will be adjusted and reverted, such that prices eventually

converge after deviating. Profitability of such strategies is consistent with cointegration, but

cointegration is not a necessary condition for pairs trading to work. Instead, it is quite likely

that pairs trading profits arise because over shorter time spans, asset prices on occasion

move together. This could, for instance, be due to fundamental reasons, such as a common

4Pairs trading of A-B pairs likely occurs, and is fully consistent with a setting where the pairs-traders
act as arbitrageurs that enforce the arbitrage relationship between the stocks, as suggested by the model of
Bossaerts (1988). Such trading need not lead to outsized profits because the A and B prices track each other
very closely and the scope for making large monetary returns are likely limited. Our empirical results are
consistent with this claim and in Section III.D we derive theoretical results that explain how this behaviour
of A-B prices relate to the main theoretical results presented in this study.

5We also provide a detailed discussion on the effect of transaction costs, both in the theoretical and the
empirical parts of the paper. In particular, we show that transactions costs tend to mostly eliminate the
returns from A-B pairs trading.
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and dominant shock affecting all stocks in a given industry. This view is supported by the

findings in Engelberg et al. (2009) and Jacobs and Weber (2015) who document that (quick)

convergence of pairs is more likely when the divergence is caused by macroeconomic news,

rather than firm specific news. One could, of course, always claim that such stories are

consistent with stocks occasionally being cointegrated, but since cointegration is defined as

a long-run property such statements make little sense.

In conclusion, cointegration of stock prices, for pairs of stocks with claims to different cash

flows, is unlikely for the simple reason that it would provide unrealistically large statistical

arbitrage opportunities. The analysis highlights the strength of a cointegrating relationship

in a setting where there are very weak short-run dynamics, and essentially shows that one

cannot expect cointegration of stock prices unless there is a “mechanical” relationship that

links the two assets together, as in the A-B share case discussed above.

The remainder of the paper is a follows. Section II sets up a model of cointegrated stock

prices and Section III derives the main theoretical predictions for pairs trading returns. The

empirical analysis is conducted in Section IV, and Section V concludes. Technical proofs and

some supplemental material are found in the Appendix.

II. A Model of Cointegrated Stock Prices

We start with formulating a very general time-series model for stock returns. We assume

that the returns on a given pair of stocks follow a bivariate Vector Moving Average (VMA)

process, with a possibly infinite lag length. Such a process is often referred to as a linear

process. It follows from the Wold decomposition (e.g., Wold (1938) and Brockwell and Davis

(1991)) that any well-behaved covariance stationary process can be represented as a (vector)

moving average process. Imposing a VMA structure is therefore a very weak assumption.

At the same time, as illustrated in detail below, this representation allows for a very simple

and clear analysis of cointegration in the corresponding price processes. In the interest of
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generality, the model is formulated for a k-dimensional vector of cointegrated prices, with

k = 2 corresponding to the standard pairs trading setting.

A. A VMA Representation of Stock Returns and Stock Prices

Let yt be a k × 1 vector of (log-) stock prices, and let the first difference of yt, ∆yt =

yt − yt−1, represent the corresponding vector of (log-) returns. The returns are assumed to

satisfy

(1) ∆yt = µ+ ut,

where µ is a constant vector and ut is a stochastic process that follows an infinite VMA

process,

(2) ut = C (L) εt =
∞∑
j=0

cjεt−j,

with εt ≡ iid (0,Σ) and Σ a positive definite covariance matrix. ut and εt are k × 1 vector

processes and cj, j = 0, 1, 2, ..., are k × k coefficient matrices. C (L) =
∑∞

j=0 cjL
j, where

L is the lag-operator, and C (1) =
∑∞

j=0 cj. In order to justify the BN-decomposition used

below, the sum in C (1) needs to converge sufficiently fast. A sufficient condition is given by∑∞
j=0 j ||cj|| < ∞ (Phillips and Solo (1992)). In order to avoid degenerate cases, it is also

assumed that at least one element in the k×k matrix C (1) is non-zero. This specification of

ut represents a stationary (I (0)) mean-zero vector process with a long-run covariance matrix

Ω = C (1) ΣC (1)′.6 In order to make the system identifiable, the normalization c0 = I is

imposed.

6In the usual notation of stochastic processes, I (1) denotes a process integrated of order 1 (i.e., a unit-root
process) and I (0) denotes a covariance stationary process (the first difference of an I (1) process).
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The price vector, yt, is obtained by summing up over the returns, ∆yt,

(3) yt = y0 + µt+
t∑
i=1

ut,

where y0 represents an initial condition. This is a VMA representation of a unit-root

nonstationary (I (1)) process.

B. Cointegration in a VMA Process

The VMA representation allows for a very simple and intuitive analysis of cointegration.

Using the BN-decomposition (Beveridge and Nelson (1981)), we can write

(4) ut = C (L) εt = C (1) εt + ε̃t−1 − ε̃t,

where

(5) ε̃t = C̃ (L) εt =
∞∑
j=0

c̃jεt−j,

and

(6) c̃j =
∞∑

s=j+1

cs.

The I (1) price process, yt, can therefore be written as,

yt = y0 + µt+ C (1)
t∑
i=1

εi +
t∑
i=1

(ε̃i−1 − ε̃i)(7)

= µt+ C (1)
t∑
i=1

εi − ε̃t + (y0 + ε̃0) ,

using the fact that
∑t

i=1 (ε̃i−1 − ε̃i) = ε̃0 − ε̃t. The representation of the price process in

equation (7) shows that the price can be written as the sum of four different components: (i) a
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deterministic trending component (corresponding to the equity premium), (ii) a non-stationary

(I (1)) stochastic martingale component, (iii) a transitory (I (0) stationary) “noise” component

(ε̃t), and (iv) an initial conditions component.

Cointegration of a vector I (1) process implies that there exists a linear combination, β′yt,

which is I (0) stationary for some β 6= 0. The I (1) component in equation (7) is given by the

martingale process, C (1)
∑t

i=1 εi. If β 6= 0 is a cointegrating vector for yt, it must hold that

β eliminates the martingale component of yt, i.e., β′C (1) = 0. Typically, it is also assumed

that the deterministic trend is eliminated through cointegration, such that β′µ = 0, and we

will maintain this assumption throughout the paper.7 That is, if β is a cointegrating vector,

it follows from equation (7) that,

(8) β′yt = β′µt+ β′C (1)
t∑
i=1

εi − β′ε̃t + β′ (y0 + ε̃0) = −β′ε̃t + β′ (y0 + ε̃0) .

The cointegrated combination of yt is made up of a transitory (I (0)) stochastic component,

and the initial condition. Pairs-trading strategies are based on standardized price processes

(total return indexes), initiated at some pre-specified value, and with little loss of generality

we therefore set β′ (y0 + ε̃0) = 0.8

C. Implicit Restrictions in the Cointegrated Model

The cointegrated model specified above is stated in very general terms, relying essentially

only on the assumption that returns follow a linear process. In the bivariate case (k = 2)

with cointegrating vector β = (1,−1)′, which would be the typical pairs trading setting, the

cointegrating relationship leads to some implicit restrictions on the model, as outlined below.

7Allowing for a non-zero deterministic trending component in the cointegrated combination implies that
the linear combination β′yt is I (0) stationary around a deterministic trend, rather than around a constant.
Such a specification seems quite removed from the general idea of pairs trading, and indeed seems quite
unlikely to occur in any empirical situation.

8That is, for β = (1,−1) this implies that the two standardized price processes are initiated at the same
value. Imposing β′ (y0 + ε̃0) = 0 has little impact on the derivations, but without this restriction one would
need to explicitly subtract the initial state from the current one in certain expressions.
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Later, we will use these restrictions to empirically evaluate the presence of cointegration.

First, there are restrictions on the VMA coefficients. Denote the moving average coefficient

matrices, for each lag j, as

(9) cj =

 ψ11,j ψ12,j

ψ21,j ψ22,j

 ,
with c0 = I. Define ψkl =

∑∞
j=1 ψkl,j, for k, l = 1, 2, and it follows that

(10) C (1) ≡
∞∑
j=0

cj ≡ I +

 ψ11 ψ12

ψ21 ψ22

 =

 1 + ψ11 ψ12

ψ21 1 + ψ22

 .
If β = (1,−1)′ is a cointegrating vector, then β′C (1) = 0 implies

ψ21 = 1 + ψ11 and ψ12 = 1 + ψ22.(11)

Second, there are restrictions on the long-run covariance matrix of returns. Let Γj ≡

E
[
(∆yt − µ)

(
∆y′t+j − µ

)]
denote the jth autocovariance of the returns ∆yt. The long-run

covariance matrix of ∆yt is then defined as

(12) Ω =
∞∑

j=−∞

Γj = Γ0 +
∞∑
j=1

(
Γj + Γ′j

)
.

In the VMA model, Ω = C (1) ΣC (1)′, and under cointegration,

(13) β′Ω = β′
(
C (1) ΣC (1)′

)
= (β′C (1)) ΣC (1)′ = 0,
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where the last equality follows from β′C (1) = 0. If β = (1,−1)′ , this implies that

(14) β′Ω =

[
1 −1

] ω11 ω21

ω21 ω22

 =

[
ω11 − ω21 ω21 − ω22

]
= 0,

such that all the elements in the long-run covariance matrix must be identical in this case.

III. Return Properties of a Pairs Trading Strategy

A pairs trading strategy for a given pair of stocks is usually defined along the following

lines. If the difference between the (standardized) prices of stock 1 and stock 2 exceed a

given threshold, a short position is taken in the stock with the relatively higher price and a

long position in the stock with the relatively lower price. The long and short positions are of

identical magnitude, resulting in a zero cost strategy. The threshold is defined in terms of the

unconditional standard deviation of the observed difference between the two price processes.

A two standard deviation difference is a standard trigger of a pairs trade. The position is

closed either after a given amount of time, or after the two prices converge. In the theoretical

analysis below, we restrict ourselves to fixed holding periods, such that the position always

closes after a given number of days. The joint price process used for measuring divergence is

defined as the total return indexes for the two stocks, initiated at some prior date.

These conditions extend naturally to the formal setting considered here, with yt interpreted

as a total return series for the stocks; for simplicity, we continue referring to yt as the price

process. If yt is a bivariate price process with cointegrating vector β = (1,−1)′, the change

in β′yt = y1,t− y2,t represents the return on a pairs trading strategy triggered by a decline in

price 1 relative to price 2. If price 1 was instead higher than price 2, the pairs trade would

take on the negative position, −β. In the analysis below, without loss of generality, we define

a pairs trade as taking on a position β, with the implicit understanding that if the price

spread is reversed, the opposite position would be used. More generally, for a k-dimensional
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price process yt, with cointegration vector β, the change in β′yt represents the return on a

generalized pairs trading strategy, involving k different stocks. Such strategies represent a

natural extension of the pairs trading idea, as pointed out by GGR, and the main results

below are derived for a general k-dimensional price process with arbitrary cointegration vector

β. However, we focus the discussion on the standard bivariate case with β = (1,−1)′ .

A. The Finite Lag Case

If we assume that ∆yt follows a finite order VMA process, such that ut = C (L) εt =∑q
j=0 cjεt−j, with q < ∞, explicit results can be calculated for the returns on the pairs

trading strategy where the holding period p is identical to the lag length q. In particular,

Theorem 1 below derives explicit expressions for the conditional moments of a pairs trading

strategy in this case.

Theorem 1 Suppose ∆yt = µ + ut = µ + C (L) εt is a k × 1 dimensional returns process,

with εt ≡ iid (0,Σ) , C (L) =
∑q

j=0 cjL
j, q < ∞, and C (1) 6= 0. The corresponding price

process is given by yt and the q−period returns on the pairs trading strategy is defined as

rt→t+q ≡
∑q

j=1 ∆β′yt+j = β′yt+q − β′yt. If yt is cointegrated with cointegration vector β, the

following results hold for the returns on the pairs trading strategy.

i. The time t conditional expected q−period return is given by

(15) Et [rt→t+q] = −β′yt.

ii. The time t conditional variance of the q−period return is given by

(16) V art (rt→t+q) = V ar (β′yt) ,

where V ar (β′yt) is the unconditional variance of β′yt.
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iii. The time t conditional Sharpe ratio for the q−period return is given by

(17) SRt (rt→t+q) ≡
Et [rt→t+q]√
V art (rt→t+q)

=
−β′yt√
V ar (β′yt)

.

The results highlight several important points.

1. In the bivariate pairs trading case with β = (1,−1)′, the conditional expected q−period

returns are exactly proportional to the deviation between the two prices, Et [rt→t+q] =

−β′yt = y2,t − y1,t. That is, the larger the deviation between the prices, the greater

the expected returns. Further, the conditional variance of the q−period pairs trading

returns is identical to the unconditional variance of the spread between the two price

processes.

2. The VMA parameters, which govern the dynamics of the price processes, do not

explicitly enter into the expected returns and variance formulas. In essence, the

cointegrating relationship, along with the lag length in the model, pins down the speed

of convergence over the next q periods in a cointegrated vector moving average model

with q lags.9

3. Suppose that we observe a negative two standard deviation outcome of the spread, β′yt.

That is, suppose −β′yt = 2
√
V ar (β′yt). In this case,

(18) SRt (rt→t+q) =
Et [rt→t+q]√
V art (rt→t+q)

=
−β′yt√
V ar (β′yt)

=
2
√
V ar (β′yt)√
V ar (β′yt)

= 2.

If q is measured in days and there are 250 trading days during the year, the annualized

Sharpe ratio is

(19) SRann =

√
250

q
× 2.

9If one were to calculate the expected returns over other periods than the q−period horizon used in
Theorem 1, the answer would generally depend on the lag coefficients explicitly, as seen in Theorem A1 in
the Appendix.

13



Table 1: Properties of q-Period Pairs Trading Returns
The table presents annualized Sharpe ratios of pairs trading strategies where a trade is initiated by a two standard

deviation price spread and is held open for q periods, and the returns are generated by a VMA(q) model. The formula

for the annualized Sharpe ratios is given in equation (19).

q 1 5 10 25 50 125 250

SRann 32 14 10 6.3 4.5 2.8 2

Table 1 reports annualized Sharpe ratios for different values of q. For instance, if returns

follow a VMA(10) process where the corresponding price processes are cointegrated,

and one puts on pairs trades with a ten-day holding period when the spread is two

standard deviations wide, the strategy has an annualized Sharpe ratio of 10.

4. The results hold for general k−dimensional cointegrated price processes, with cointegration

vector β. Conditional on a given value of β′yt, the expected returns and Sharpe ratios

are unaffected by the dimension of the system (i.e., by the value of k).

The results in Theorem 1 provide a very clear picture of the return properties of a pairs

trading strategy when the returns follow a VMA of some finite order q, and the holding

period for the trading strategy is equal to q periods (days). For small to moderate values

of q, such holding periods are quite sensible and realistic. However, as q increases, and in

particular as q → ∞, it is no longer feasible to consider holding periods that are equal to q

days. Instead, we want to consider fixed holding periods, as well as allowing infinite values

for the lag length q.

B. Fixed Holding Periods and the Infinite Lag Case

We start with deriving theoretical results for a holding period p = 1, allowing for lag

length q = ∞. As shown in Theorem A1 in Appendix C, for an arbitrary value of the lag

length q (including q = ∞), the conditional expected pairs trading return from t to t + 1 is

not solely a function of the distance between the two price processes, β′yt, but also depends

explicitly on the realizations of the previous shocks, εt−j, and the MA coefficients, cj. The

simple mapping between the price difference, β′yt, and the Sharpe ratio of the pairs trading
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strategy, seen in Theorem 1, is therefore no longer present. That is, conditioning on the price

difference is no longer sufficient to pin down the conditional Sharpe ratio for a given pairs

trade.

In particular, as shown in Theorem A1, the one-period conditional Sharpe ratio is given

by

(20) SRt,t→t+1 =
β′
∑∞

j=0 cj+1εt−j√
β′Σβ

.

This expression is not directly amenable to the analysis of pairs trading strategies that

are conditioned on a certain price divergence (i.e., β′yt) between the two stocks.10 The

sequence {εt−j}∞j=0 is not a directly observable quantity, and statements conditional on a

specific realization of this sequence are not particularly useful. To get around this issue, we

consider the notion of an unconditional pairs trade: at some arbitrary time t, an investor puts

on a pairs trade without conditioning on the price difference or any other information. This

is obviously not an attractive strategy, with an expected return equal to zero.11 However, it

enables us to think of the sequence {εt−j}∞j=0 as a random, rather than a realized quantity.

Formally, given information at time t,
∑∞

j=0 cj+1εt−j takes on a fixed (non-stochastic) value,

which in turn delivers a fixed conditional Sharpe ratio. If one does not condition on information

formally realized at time t, {εt−j}∞j=0 is a random sequence and SRt→t+1 a random variable.

In particular, we can think of SRt→t+1 as the time t stochastic Sharpe ratio facing the investor

who puts on the unconditional pairs trade at time t. Had the investor observed {εt−j}∞j=0 , the

Sharpe ratio would have been a fixed number, but without this information, it is a random

variable. Under more specific assumptions on the sequences cj and εt, an explicit distribution

can be derived for the stochastic Sharpe ratio:

10As made clear in equation (A27) in the Appendix, the conditional Sharpe ratio partly depends on the
price difference β′yt, but also on the sequence of previous shocks.

11To be clear, we define the pairs trade as always going long stock 1 and short stock 2, such that the
position is given by β = (1,−1). Thus, since the investor does not condition at all on the current prices, he
is just as likely to put on a trade in the “wrong” direction (i.e., go long stock 1 when it has increased in price
relative to stock 2) as in the right direction. As seen in Theorem 2, the expected return is indeed equal to
zero.
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Theorem 2 Suppose ∆yt = µ + ut = µ + C (L) εt is a bivariate returns process, with εt ≡

iidN (0,Σ) , C (L) =
∑∞

j=0 cjL
j, and C (1) 6= 0. The corresponding price process is given by

yt, and the returns on the pairs trading strategy is defined as rt→t+1 ≡ ∆β′yt+1. Further,

assume that the coefficients cj can be written as

(21) cj = h (j)

 a b

c d

 ,
where h (j) is a convergent series such that H∞ ≡

∑∞
j=1 h (j) < ∞. In addition, define

H
(2)
∞ ≡

∑∞
j=1 h (j)2. If yt is cointegrated with cointegration vector β = (1,−1) , the one-period

Sharpe ratio for the unconditional pairs trading strategy is distributed according to

(22) SRt→t+1 ∼ N

(
0,
H

(2)
∞

H2
∞

)
.

Theorem 2 provides the distribution of the Sharpe ratio under the assumption of normally

distributed innovations, and MA coefficients that are proportional to some function h (j). The

series h (j) is assumed to be convergent. If q < ∞, this restriction is trivially satisfied and

the same results hold, with H∞ replaced by Hq ≡
∑q

j=1 h (j) and H
(2)
∞ by H

(2)
q ≡

∑q
j=1 h (j)2.

As is apparent from the definitions of H2
∞ and H

(2)
∞ , the distribution of the Sharpe ratios is

invariant to the overall scale of the lag coefficients, (i.e., the values of a, b, c, d in equation

(21)), and only depends on the relative weights attributed to each lag (i.e., the shape of the

function h (j)). This result echoes that in Theorem 1, where the Sharpe ratio is completely

invariant to the lag coefficients cj.

How can one link the distribution of the stochastic Sharpe ratio in equation (22) with

the actual fixed conditional Sharpe ratio from a conditional pairs trading strategy? Suppose

the conditional pairs trading Sharpe ratio is monotonically increasing in the observed price

deviation. I.e., the larger β′yt is, the greater is the Sharpe ratio. In that case, the two standard

deviation outcome of the Sharpe ratio distribution should correspond to conditional pairs
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trades triggered by a two standard deviation price divergence. That is, from the distribution

of the Sharpe ratios for the unconditional pairs trading strategy, we can infer the Sharpe

ratios of the conditional pairs trading strategy.

From Theorem A1 in Appendix C, it appears that the Sharpe ratio is increasing in the

price deviation. It is not clear that the relationship is monotone, however, since the price

difference is a function of the past shocks that also appear in the Sharpe ratio expression

(equation (A27)). Therefore, we cannot say for certain that a two standard deviation

divergence between the price processes corresponds to a two standard deviation outcome

of the Sharpe ratio. However, it would be surprising if the speed of convergence did not

increase in the size of the price deviation, and simulation results reported below strongly

suggest that this is indeed the case.

In Table 2, we report the one standard deviation annual Sharpe ratio, from Theorem 2,

for various parameterizations of h (j). The daily one standard deviation Sharpe ratio equals√
H

(2)
∞ /H2

∞, and the corresponding annualized Sharpe ratio is
√

250

√
H

(2)
∞ /H2

∞. We also

report the Sharpe ratios from simulated pairs trades triggered at either a one or two standard

deviation threshold (SR1
ann and SR2

ann, respectively). The details of the simulation procedure

are described in Appendix A. As seen in Table 2, the simulated one standard deviation Sharpe

ratios (SR1
ann) are very close to the corresponding one standard deviation Sharpe ratios from

the theoretical analysis

(√
250
√
H

(2)
q /H2

q

)
, and the simulated Sharpe ratios appear to grow

linearly with the observed price difference, measured in standard deviations. Table 2 thus

gives strong support to the conjecture that the Sharpe ratio is monotonically increasing in

the price difference.

Table 2 reports Sharpe ratios for various specifications of h (j) in the form

(23) h (j) =
1

jγ
or h (j) =

(−1)j

jγ
.

In all cases, the MA coefficients decline in absolute magnitude according to a power function,

or remain constant (γ = 0). Since most of these specifications do not result in finite H∞ =
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Table 2: Annualized Sharpe Ratios from One-Period Pairs Trading
The table presents annualized Sharpe ratios of pairs trading strategies where a trade is held open for one period,

and the returns are generated by a VMA(q) model. The h(j) specifications describe the lag structure of the VMA

coefficients (see equation (21)), while Hq ≡
∑q

j=1 h (j) and H
(2)
q ≡

∑q
j=1 h (j)2. The SR1

ann and SR2
ann values

correspond to the one- and two standard deviation strategies, respectively, and are calculated using simulated pairs

trades. The columns labeled
√

250

√
H

(2)
∞ /H2

∞ indicate the theoretical one standard deviation Sharpe ratios.

q =∞ q = 10 q = 250

h (j)
√

250

√
H

(2)
∞

H2
∞

√
250

√
H

(2)
10

H2
10

SR1
ann SR2

ann

√
250

√
H

(2)
250

H2
250

SR1
ann SR2

ann

1/j2 10.00 10.61 10.45 20.92 10.02 9.51 19.00

1/j 6.72 6.58 13.21 3.32 2.25 4.51

1/j0.5 5.39 5.22 10.45 1.29 1.18 2.33

1 5.00 4.41 8.76 1.00 0.88 1.74

(−1)j /j2 20.00 20.11 20.03 40.09 20.00 19.94 39.90

(−1)j /j 29.26 30.49 28.29 56.47 29.31 28.63 57.31

∑∞
j=1 h (j), results for finite q processes are also shown, setting q = 10 or 250. In the

convergent cases, restricting the MA process to only 10 lags leaves results almost identical

to those in the MA(∞) case, for a given specification of h (j). Most specifications in Table 2

result in very high annual Sharpe ratios. This is particularly true for the alternating series,

h (j) = (−1)j
/
jγ, with Sharpe ratios of 40 and above for a two standard deviation strategy.

It is also clear that the Sharpe ratios become smaller as h (j) declines slower. This makes

intuitive sense, since a more slowly declining h (j) is associated with slower mean reversion

in the model, or put differently, more long-lasting transient dynamics.

To some extent, the purpose of Table 2 is to evaluate whether there exists any “reasonable”

parameterizations of cj, which admit cointegration but does not result in Sharpe ratios that

are too high. Note that Sharpe ratios around 2 are generally in line with those documented

empirically in GGR for typical pairs trading strategies, although for an individual pair, a

Sharpe ratio of 2 is probably still on the high side. The only parameterizations in Table 2

that result in annualized Sharpe ratios around 2 for a two standard deviation strategy are

h (j) = 1/j0.5 and h (j) = 1, with a lag length q = 250. More quickly declining weights

(a larger γ or a smaller maximal lag length q) result in Sharpe ratios that are considerably

larger. Thus, judging only by the Sharpe ratios, it would seem that a lag structure spanning

upwards of a year (q = 250) with MA coefficients that decline no faster than a rate 1/j0.5

18



would be necessary to keep the Sharpe ratios within reasonable bounds.

Theorem 2 provides theoretical results for the case when the holding period is p = 1. We

provide simulation results for strategies when the pairs trading position is closed after p > 1

periods (days); the details of the simulation design are described in Appendix A. The two

top graphs in Figure 1 show annualized Sharpe ratios generated by a two standard deviation

strategy for holding periods up to a month (p = 21). Several different VMA parameterizations

are presented (q = {10, 250} and different h(j) specifications). For p = 1, the Sharpe ratios

exactly correspond to the SR2
ann values from Table 2. Focusing first on the q = 10 case,

we see that the Sharpe ratios decline with increasing holding period when γ = 2 or 1. On

the contrary, when h(j) declines slowly (γ = 0.5 or 0), Sharpe ratios initially increase with

the holding period. In these latter cases, since the convergence of the two prices is slower,

holding the position for a few days leads to higher risk adjusted returns. When p = q = 10,

Theorem 1 applies and the Sharpe ratio is the same for all h(j) specifications. All in all, with

q = 10, the two standard deviation strategy produces annual Sharpe ratios well above 5 for

any h(j) specification and holding periods at least up to a month. Turning to the q = 250

case, we showed in Table 2 that the parameterizations with h (j) = 1/j0.5 and h (j) = 1 lead

to Sharpe ratios around 2 for a one-day holding period. The top right graph in Figure 1

shows that the Sharpe ratios do not change much with the holding period in these cases,

but stay around 2. Actually, we know from Theorem 1 that the Sharpe ratio exactly reaches

2 when the holding period is p = q = 250 days. To summarize, considering longer holding

periods (p > 1) does not change our conclusions from Theorem 2. A lag structure spanning

upwards of a year (q = 250), with MA coefficients that decline no faster than a rate 1/j0.5,

would be necessary to keep the Sharpe ratios within reasonable bounds.

The middle two graphs in Figure 1 show the percentage of converged trades (where the

two prices have converged) by period p in our simulation. We focus on the cases when q = 250

(middle right graph in Figure 1) and h(j) declines slowly (h (j) = 1/j0.5 or h (j) = 1), as these

parameterizations provide empirically reasonable Sharpe ratios around 2. The convergence
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Figure 1: Properties of a Two Standard Deviation Strategy for Different Holding Periods
The graphs present trade characteristics of pairs trading strategies where a trade is initiated by a two standard

deviation price spread and held open for p periods (on the horizontal axis), and the returns are generated by a

VMA(q) model (q = 10 and q = 250 for the graphs on the left and right, respectively). The lines correspond to

different h(j) specifications (see the legend). The top graphs present annualized Sharpe ratios, the middle graphs

present the percentage of converged trades within p periods, and the bottom graphs present the number of opened

trades within 125 trading days (6 months). All characteristics are calculated using the simulation procedure described

in Appendix A.
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of pairs trades in these cases is quite slow (note that the scale for p is different in this graph,

compared to all the other graphs in Figure 1). Up to a holding period of one month (p up

to 21), less than 1% of the trades converge. Even if we consider holding periods up to two

months (p up to around 40), only around 5% of the trades converge. This is at odds with the

empirical evidence from pairs trading studies, which suggest that pairs trading is a relatively

fast strategy, with convergence of pairs often occurring within a month or so (e.g. Engelberg

et al. (2009), Do and Faff (2010), and Jacobs and Weber (2015)).

The final two graphs at the bottom of Figure 1 further illustrate that large values of q lead

to a severe slow-down of pairs trading. The graphs show how often a new trade is opened

in a given pair.12 Specifically, the bottom panels in Figure 1 show the average number of

trades per 6-month period (125 trading days); the 6-month period is chosen to align with the

summary statistics presented in the empirical section of the paper. For q = 10, this number

is typically around 2.5, depending somewhat on the holding period p and the shape of the

function h (j). That is, on average, a new pairs trade is put on about every 50 trading days.

For q = 250, the trading frequency is much smaller – unless the MA coefficients decline very

quickly at a rate 1/j2 – with only about 0.25 trades in a given 6-month period or, equivalently,

a new trade roughly every 500 days. To put these numbers in an empirical context, GGR

find that a typical pair trades approximately 2 times in a 6-month period. This is similar to

the trade frequency obtained for q = 10, but much more frequent than what is observed for

q = 250 (unless h (j) = 1/j2).

All the above results are derived under a VMA specification for the returns process. An

alternative way of modeling stock returns is, of course, through a Vector Autoregression

(VAR) model. It is well known that stationary VAR models can be inverted into VMA

12A pairs trade position is first opened when the spread between the two prices crosses the two standard
deviation trigger point. If the pair converges during the holding period of p days, the pair is eligible to
trade again immediately after closing; i.e., a position will be opened again if the prices diverge beyond the
two standard deviation interval. If the pair does not converge during the holding period, the pair does not
become available for trading again until it has converged. That is, at any given point, at most one position
can be open in the pair, and the pair must converge between each new trade. This trading rule essentially
follows that of GGR, apart from the fact that in GGR the positions are held until convergence, instead of a
fixed period.
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models, and vice versa for invertible VMA models. One would therefore expect the two

modeling approaches to yield similar pairs trading implications. Appendix B derives a result

similar to Theorem 1, but in a VAR setting. As is discussed in some detail in Appendix B,

the implications for pairs trading in a cointegrated VAR setting are indeed very similar to

those derived in the VMA case.

C. Is Cointegration among Stock Prices Plausible?

Theorems 1 and 2 explicitly quantify the properties of the returns from a pairs trading

strategy in a cointegrated price system. Arguably, the most important determinant of the

Sharpe ratio on the pairs trading strategy is the maximal lag-length q in the VMA process

that governs the dynamics of the stock returns.13 It is clear that the most outsized Sharpe

ratios occur for small values of q. The parameter q can be viewed as the maximal lag length

at which the returns exhibit any own- or cross-serial correlation. A value of q = 250 would

suggest that the serial correlation in stock returns stretches back one year. Or, put differently,

that it takes up to a year to fully incorporate news into stock prices, after these news are

initially revealed.

Cointegration becomes a very powerful concept when coupled with asset prices, because

the transitory component in asset prices is generally considered to be small and short-lived.

This lack of short-run dynamics in stock prices puts strong bounds on the duration for which

two cointegrated price processes can deviate from each other, and these bounds grow tighter

as the temporal span of the lag effects (i.e., q) becomes smaller. In our view, the above

theoretical analysis therefore implies either that (i) cointegration among stock prices does

not exist (or is at least very unlikely), since the implied Sharpe ratios appear too large to

be realistic, or (ii) that the serial correlation in stock returns stretches over considerably

13More generally, as seen in Theorem 2, Table 2, and Figure 1, the speed of the decline in the VMA
lag-coefficients (i.e., the shape of the h (j) function) is the primary determinant of the profitability of pairs
trading strategies. In practice, distinguishing between an infinite order VMA model with quickly declining
lag coefficients, and a finite order VMA model with some maximal lag length q, is essentially impossible. We
therefore focus the discussion around the notion of a finite maximal lag length.
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longer horizons than is usually assumed. The exact cut-off point for “too large a Sharpe

ratio” is of course not precisely defined, but individual investment opportunities with Sharpe

ratios above three or four should be few and far in between, especially when they can be

implemented as easily as a pairs trading strategy, which requires nothing more complicated

than the ability to short-sell a stock.14 Such a threshold would suggest that the dynamics in

stock returns play out over at least 6 months, and more likely 12 months (q = 250), in order

for cointegration to be realistic. However, such long-lasting transient dynamics appears to be

at odds with the empirical evidence that pairs trading is a relatively fast strategy, with a new

trade in a given pair every 2-3 months and convergence typically occurring within a month

or so. Figure 1 shows that trading is much less frequent and the convergence is considerably

slower in the q = 250 case.

D. The Size of Price Deviations and Transaction Costs

The theoretical Sharpe ratios derived above are all invariant to the overall scale of the

price processes. That is, the Sharpe ratios correspond to pairs trades triggered by two

standard deviation price spreads, but the absolute size of that two standard deviation spread

does not enter into the formulas for the Sharpe ratios. However, once one starts considering

transaction costs, the actual scale of the price processes becomes important. If trading costs

shave off a fixed amount (i.e., a number of percentage points) from each trade, as is usually

assumed, the overall level of returns becomes highly important. Corollary 1 shows what the

actual price spreads would be under cointegration, given similar parametrizations to before.

14There are examples of statistical arbitrage strategies that appear to deliver very high Sharpe ratios. For
instance, both Nagel (2012) and Wahal and Conrad (2017) report annualized Sharpe ratios well above 5 for
some strategies. Interestingly, both of these examples represent returns to some form of liquidity provision,
which is nowadays closely connected with the ability to trade at low costs–much of modern market making
is conducted by high-frequency traders who specialize in trading with minimum frictions. As seen in the
discussion on transaction costs in Section III.D, cointegration is most likely to be present in the case when
the two price processes co-move very closely, in which case the absolute level of returns from pairs trading
is small, and therefore highly sensitive to transaction costs. Since trading costs can arguably be decreased
by investments in trading infrastructure, these large Sharpe ratios might be viewed as partly a return on the
investment in trading infrastructure.
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Corollary 1 Suppose ∆yt = µ + ut = µ + C (L) εt is a bivariate returns process with εt ≡

iid (0,Σ), Σ =

 σ11 σ12

σ12 σ22

, C (L) =
∑q

j=0 cjL
j, and C (1) 6= 0. Assume that the coefficients

cj can be written as in equation (21). If the corresponding price process, yt, is cointegrated

with cointegration vector β = (1,−1) , then

(24) V ar (β′yt) = V ar (y1,t − y2,t) = (σ11 + σ22 − 2σ12)
∞∑
j=0


(∑∞

s=j+1 h (s)
)2

(
∑∞

s=1 h (s))
2

 .
For ease of illustration, suppose that σ11 = σ22, so that equation (24) can be written as

(25) V ar (y1,t − y2,t) = 2σ11 (1− ρ12)
∞∑
j=0


(∑∞

s=j+1 h (s)
)2

(
∑∞

s=1 h (s))
2

 ,
where ρ12 is the correlation between the innovations to the two price processes. The formulation

in (25) highlights the strong dependence between the variance of the price deviations, and

the correlation between the innovations: as ρ12 ↑ 1, V ar (y1,t − y2,t) ↓ 0. A higher correlation

implies that the two price processes are hit by more similar shocks, limiting the size of the

deviations between the two processes, keeping all else equal.15

In order to get a sense of the actual scale of the price deviations, suppose that σ11 and σ22

are both equal to 4.5 percent. This is similar to the average daily stock return variance in our

data, and also in line with average daily variances for (large) U.S. stocks. Table 3 presents

the two standard deviation spread that would trigger a pairs trade for different ρ12 values.

In the setting of Theorem 1, where the holding period is equal to the lag length (p = q),

these numbers also represent the expected returns on the pairs trade (see equation (15)). For

instance, with h (j) = 1/j and q = 10, the expected return over the 10-day holding period is

15The function h (s) also plays a role. As seen in (24), the less relative mass the function h (s) has for large s,
the smaller the variance of the price difference, keeping σ11, σ22, and σ12 fixed. That is, as discussed previously,
limiting the short-run dynamics implies smaller deviations between the two price processes, keeping all else
constant.
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Table 3: Theoretical Two Standard Deviation Spreads
The table presents two standard deviation spreads implied by the VMA(q) model. In particular, we report

2
√
V ar (y1,t − y2,t) values calculated from equation (25) with σ11 = 0.045, ρ12 ∈ {0.5, 0.95}, q ∈ {10, 250}, and

various h(j) specifications. All values in the table are expressed in percent.

q = 10 q = 250

h (j) ρ12 = 0.5 ρ12 = 0.95 ρ12 = 0.5 ρ12 = 0.95

1/j2 4.63 1.46 4.87 1.54

1/j 5.98 1.89 15.46 4.89

1/j0.5 7.14 2.26 28.74 9.09

1 8.32 2.63 38.85 12.28

(−1)j /j2 4.37 1.38 4.36 1.38

(−1)j /j 5.28 1.67 5.10 1.61

equal to 6.0 and 1.9 percent for correlations ρ12 = 0.5 and ρ12 = 0.95, respectively. As seen

from the result in Theorem 1, the Sharpe ratio of the trade is not affected by the correlation,

since the variance of the returns also decreases as the correlation increases. However, if one

takes trading costs into account, this invariance of the Sharpe ratio no longer holds.

As we discuss further in the empirical section, it is reasonable to assume that the trading

costs for a full round trip of a pairs trade is about 1.2 percentage points (120 basis points

(bps)). Thus, the before-cost expected returns of 6.0 and 1.9 percent would reduce to 4.8

and 0.7 percent after costs, respectively. Since the variance of the returns are not affected by

trading costs, the Sharpe ratios after costs decrease in proportion with returns, in this case

by 20% and 65% for ρ12 = 0.5 and ρ12 = 0.95, respectively. Thus, transaction costs become

increasingly important as ρ12 ↑ 1.

Provided that the two standard deviation spread that triggers a pairs trade is not too

small, transaction costs only have a limited impact on the theoretical Sharpe ratios. Or put

differently, as long as the innovations to the two price processes are not too highly correlated,

the theoretical results are only mildly affected by transaction costs. These findings also

suggest a third interpretation of the results in this paper: if prices are cointegrated and have

limited short-run dynamics, the correlation between the innovations must be near unity. In

this case, although the theoretical Sharpe ratios are unaffected, the price deviations are small

enough that they are likely difficult to profit substantially from, given transaction costs. As

discussed in the empirical section, prices for A- and B-shares issued by the same firm fit this
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description quite well, whereas ordinary (non A-B) pairs show much larger spreads and never

exhibit very high correlations between the innovations.

E. Misclassification of Pairs

The above theoretical framework implicitly assumes that pairs of stocks with cointegrated

prices are already identified by the investor. In practice, even if cointegrated stock prices

do exist, the investor would have to do some initial screening to find pairs of stocks with

cointegrated prices. Such an empirical classification would naturally run the risk of misclassifying

some pairs as cointegrated when they are, in-fact, not.

In the theoretical analysis, we only consider the return properties of a single pairs trade,

but clearly one can combine such trades into a portfolio of pairs trades. Specifically, suppose

that some fraction λ of the pairs identified for pairs trading are not cointegrated, whereas the

other pairs are cointegrated. The cointegrated pairs would result in pairs-trading returns that

satisfy the results derived above. However, the non-cointegrated pairs would likely perform

considerably worse. For simplicity, suppose that the mean returns on the non-cointegrated

pairs trades are equal to zero. In this case, assuming that the other properties of the

non-cointegrated pairs are similar to those of the cointegrated pairs, the Sharpe ratio of the

portfolio of pairs trades would drop by a fraction λ, compared to the case of a portfolio with

no misclassified pairs.16 If λ was equal to, say, 20 percent and the Sharpe ratio in the correctly

classified pairs case was equal to 3, it would drop to 2.4. This is a substantial performance

deterioration to an actual investor, but does not change the qualitative conclusions of the

theoretical analysis. Therefore, unless the misclassification is of a very large order, upwards

16The mean-zero assumption would seem fairly conservative, essentially implying that no signal at all
was identified when selecting the pair. The assumption that the Sharpe ratio is only affected through the
mean returns implies that the variances and covariances are assumed identical for the cointegrated and
non-cointegrated pairs. For short holding periods (e.g., 10 or 20 days), this does not seem an unreasonable
assumption as the the long-short position can be scaled up or down to some target variance; in theory, the
variance of the spread between two non-stationary non-cointegrated processes will increase over time, but over
short horizons such effects are small. There seems to be little reason to assume that diversification benefits
from non-cointegrated pairs would be worse than those from other cointegrated pairs, so the covariance
assumption seems fairly innocuous.
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of 50 percent or more, the potential effects on the Sharpe ratios are fairly limited in the sense

that the overall message of the theoretical analysis does not get overturned in any way.

IV. Empirical Analysis

The empirical analysis is based on stocks traded on the Stockholm stock exchange. Our

initial sample consists of all stocks listed in the large cap segment of the Nasdaq Stockholm

exchange as of June 1, 2015 and the sample period is from January 1995 to December 2014.17

We use data from Sweden, because the wide-spread use of dual class shares provides a very

useful control group of stock pairs for our analysis. Dual class firms issue two types of

shares, typically labeled as A- and B-shares, which provide identical ownership fractions in

the underlying company and receive identical dividends, but represent different voting rights.

B-shares would typically provide one vote per share, whereas the A-shares might provide 10

votes per share. Since they provide a claim to the exact same dividends, their prices are

likely to be closely related.

Indeed, financial theory would suggest that the A and B prices are cointegrated (as in

Bossaerts (1988)). Also, as seen in the plot of the prices for the two classes of Volvo shares

displayed in Figure 2, the A-B prices track each other almost perfectly. This visual evidence

is certainly very compelling and suggestive of cointegration. Based on the visual evidence

and the theoretical motivations, we believe that the A-B prices are likely cointegrated, or

at least as close to being cointegrated as one can practically find in terms of stock prices.18

The empirical results for the A-B pairs are subsequently used as a form of calibration for

17The data are from the FinBas database, which contains end-of-day stock prices, adjusted for corporate
actions (e.g., stock splits and buybacks), from the Nordic Stock Exchanges. It is administered by the Swedish
House of Finance. Further details are available at https://data.houseoffinance.se/finbas/finbasInfo.

18As stressed in Section IV.B, it is empirically very difficult to irrefutably verify cointegration, but it is
certainly hard to imagine stronger co-movement than that illustrated in Figure 2. If one studies a graph of
the difference between the two prices, some persistent patterns are visible, but the overall scale of these price
differences is clearly small, as immediately evidenced by Figure 2. As a result, however, formal cointegration
tests, which do not take into account the scale of the deviations viz a viz the original price series, can often
not reject the null of no cointegration for the A-B pairs, despite the fact that the price co-movement for all
A-B pairs in our sample look very similar to that illustrated in Figure 2. Nevertheless, we regard the A-B
pairs as a relevant control group against which to compare the degree of co-movement in the ordinary pairs.
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Figure 2: Log Price Series of Volvo A- and B-Shares
The figure shows the (log-) price series for the two share classes of Volvo, one of the biggest Swedish companies, in

the last ten years of our sample (Jan 2005 to Dec 2014).
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our empirical methods. Specifically, the A-B pairs provide a benchmark for how closely

the empirical results are expected to align with the theoretical predictions, if we are indeed

observing cointegrated price pairs.19

Our empirical strategy is thus to investigate both ordinary pairs and A-B pairs, where

by “ordinary” we refer to pairs where the two stocks are issued by two different companies.

The empirical analysis consists of two parts. First, we calculate empirical Sharpe ratios and

other trade characteristics from the implementation of a pairs trading strategy similar to that

analyzed in GGR. Second, we quantify how close the implicit restrictions of cointegration

(discussed in Section II.C) are to being satisfied empirically. Both exercises provide direct

evidence on how well the empirical results for the ordinary pairs approximate the theoretical

model predictions, both in terms of pairs-trading returns as well as in terms of actual

coefficient restrictions implied by cointegration. In addition, the results for the ordinary

pairs are compared to the results for the A-B pairs. If the empirical trade characteristics

19To the extent that the A-B pairs are not perfectly cointegrated (see Footnote 18), the comparison to
A-B pairs is conservative in the sense that the results for other non-cointegrated pairs are less likely to be
clearly separated from the A-B pairs. That is, one would be less likely to find evidence against cointegration
of other pairs, compared to the case when the A-B pairs are perfectly cointegrated.
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and coefficient estimates of the A-B pairs are (much) more in line with the theoretical

predictions of the cointegrated model than those of ordinary pairs, we view it as evidence

that cointegration between prices of stocks issued by different companies is not likely.

Sweden is number one in the world in terms of the use of dual class shares (La Porta,

Lopez-de Silanes, Shleifer and Vishny (1998)). Some of the biggest and most well known

Swedish companies have dual class shares, where both classes are publicly traded on the

same exchange. Moreover, the voting premium on the high voting A-shares is also among

the lowest in the world, and it is lower than in the U.S. (Nenova (2003)). Before 1993, Swedish

firms, apart from having A- and B-shares, could also have restricted and unrestricted share

classes. As a consequence, many firms had four different types of shares. Restricted and

unrestricted shares not only differed in voting rights, but also represented different cash flow

rights. Moreover, only unrestricted shares could be held by foreigners. In January 1993 the

distinction between restricted and unrestricted share classes was abolished, leaving firms with

only A- and B-shares; for a detailed analysis of the effects of this change, see Holmén (2011).

To avoid complications due to the differences between restricted and unrestricted shares, we

begin our sample in January 1995, so that the market had enough time to incorporate the

change in 1993. The end of the sample period is December 2014, which gives 20 years of

daily data.

Table 4 provides a brief description of the sample as of June 1, 2015. There are 72 listed

companies with a total market capitalization of 5403bn SEK. Most of these firms have dual

class shares. However, in many cases, only one of the share classes is listed on the exchange.

We need to observe the price series of both classes for our analysis, and hence we need firms

with both A- and B-shares listed. There are 21 such companies representing 2271bn SEK,

which is 42% of the total market capitalization. We restrict the analysis to firms for which

we observe all end-of-day prices (closing price or the average of the end-of-day bid and ask

prices if the closing price does not exist) during our 20-year sample period. There are 24 such

companies representing 55% of the total market capitalization (2957bn SEK). Out of these
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Table 4: Sample Coverage
The table describes the large cap firms on the Nasdaq Stockholm exchange as of June 1, 2015. The upper panel

presents the number of firms and total market capitalization for different subsets. The lower panel presents the top

10 (in terms of market capitalization) firms.

# Firms Mkt. Cap (bn. SEK)

Large cap firms 72 5403

Dual class firms with both classes listed 21 2271

Firms in the sample 24 2975

Dual class firms in the sample 8 1638

A-B listed Mkt. Cap (bn. SEK)

Hennes & Mauritz AB No 486

Nordea Bank AB No 437

Ericsson, Telefonab. L M Yes 298

Atlas Copco AB Yes 284

Investor AB Yes 244

Svenska Handelsbanken Yes 242

Skandinaviska Enskilda Banken Yes 241

Volvo AB Yes 232

Swedbank AB No 227

TeliaSonera AB No 217

24 firms, there are 8 with both A- and B- shares listed, representing 30% of the total market

capitalization (1898bn SEK). Altogether, there are 8 A-B pairs and 488 ordinary pairs in

our sample. The lower panel of Table 4 lists the top 10 Swedish firms in terms of market

capitalization. Out of the top 10 firms, six have both A- and B-shares listed on the exchange.

A. Empirical Sharpe Ratios

We start by calculating Sharpe ratios and other trade characteristics of pairs trading in

our sample. The evaluation period runs from January 1996 to December 2014, since the first

12 months of the original 20 year sample has to be reserved for the first formation period, as

explained below.

GGR consider the following implementation of pairs trading. During a 12-month formation

period, all possible stock pairs are formed, and for each pair the sum of squared deviations

(SSD) in the standardized daily price series of the two constituent stocks is calculated.20

From all possible pairs, those with the lowest SSD are chosen for trading. During the trading

20The standardized price series is the cumulative total return index scaled to start at 1 SEK at the beginning
of the period. The scaling is done at the beginning of both the formation and the trading periods.
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period, defined as the 6-month period immediately following the 12-month formation period,

a long-short position in a pair is opened whenever the standardized prices of the constituent

stocks diverge by more than two standard deviations of the historical price difference observed

over the formation period. In GGR’s implementation, the position is closed when the two

price series converge, or at the end of the trading period if convergence never occurs. Pairs

that complete a round-trip are then available for trading again for that period. A typical

trading portfolio is an equally weighted combination of the top 5 or top 20 pairs with the

lowest SSD. GGR repeat this 12-6 implementation cycle every month, effectively mimicking

a hedge fund of separate managers whose implementation cycles are staggered by one month.

The monthly return on the strategy is the equally weighted monthly return across the 6

managers who are active in the given month. When calculating average returns and Sharpe

ratios for this strategy, we follow the “committed-capital” approach of GGR and assume

that the fund has committed capital to each of the chosen pairs, and when this capital is not

invested in an open pair, it earns zero returns.

To be in line with our theoretical analysis, we modify GGR’s strategy at one point: instead

of holding an open position in a pair until the two price series converge, the position is held

for a fixed holding period (i.e., a fixed number of trading days). Otherwise, our strategy is

exactly the same as the one described above. In particular, while pairs are not held until

convergence, after a pair has closed it is not eligible for trading again until it has converged;

if it converged before closing, it is available for trading immediately upon closing.

Sharpe ratios and other characteristics of the pairs-trading strategies are reported in

Table 5. To put the results into perspective, note that the OMXS30 index, which is the

capitalization-weighted index of the 30 largest stocks of the Stockholm stock exchange, has

an annualized Sharpe ratio of 0.37 over our sample period. We separately report results for

trading ordinary and A-B pairs. The first three columns of Table 5 report the performance

of strategies where the top 5, 8, and 20 ordinary pairs are traded. The last two columns

report the performance of strategies where the top 5 and top 8 A-B pairs are traded. Note
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Table 5: Empirical Characteristics of Pairs-Trading Strategies
The table presents Sharpe ratios and other characteristics of pairs-trading strategies where each position is held open

for fixed number of trading days (5, 10, and 15 days in Panels A, B, and C, respectively). The first three columns

correspond to the strategies where the top 5, 8, and 20 ordinary pairs (in terms of lowest SSD) are traded. The last

two columns correspond to the strategies where the top 5 and top 8 A-B pairs (in terms of lowest SSD) are traded.

Ordinary pairs A-B pairs

Number of traded pairs 5 8 20 5 8

A. 5-day holding period

Annualized Sharpe ratio 1.32 1.60 1.89 2.87 2.91

Annualized Sharpe ratio (10bp one-way cost) 0.85 1.06 1.26 2.15 2.28

Annualized Sharpe ratio (30bp one-way cost) -0.12 -0.08 -0.12 -0.27 0.04

Average trigger (%) 9.73 10.11 11.14 1.96 2.34

Trades per share in 6 months 1.36 1.33 1.21 2.21 1.81

Mean of per trade returns (%) 1.08 1.14 1.13 1.05 1.13

Std of per trade returns (%) 4.46 4.51 4.68 1.25 1.32

Annualized per trade Sharpe ratio 1.71 1.78 1.72 5.94 6.04

B. 10-day holding period

Annualized Sharpe ratio 1.37 1.57 1.86 2.84 2.94

Annualized Sharpe ratio (10bp one-way cost) 1.00 1.16 1.35 2.07 2.27

Annualized Sharpe ratio (30bp one-way cost) 0.24 0.30 0.27 -0.24 0.11

Average trigger (%) 9.73 10.11 11.13 1.99 2.35

Trades per share in 6 months 1.32 1.29 1.17 1.99 1.64

Mean of per trade returns (%) 1.28 1.34 1.34 1.07 1.16

Std of per trade returns (%) 5.36 5.63 5.96 1.29 1.44

Annualized per trade Sharpe ratio 1.19 1.19 1.12 4.14 4.05

C. 15-day holding period

Annualized Sharpe ratio 0.99 1.30 1.41 2.66 2.67

Annualized Sharpe ratio (10bp one-way cost) 0.68 0.96 1.01 1.89 2.00

Annualized Sharpe ratio (30bp one-way cost) 0.05 0.24 0.18 -0.20 0.13

Average trigger (%) 9.75 10.12 11.13 1.96 2.36

Trades per share in 6 months 1.28 1.26 1.14 1.78 1.49

Mean of per trade returns (%) 1.17 1.39 1.30 1.07 1.18

Std of per trade returns (%) 6.36 6.40 6.73 1.36 1.57

Annualized per trade Sharpe ratio 0.75 0.88 0.79 3.20 3.07

that in the latter case, there is no pair selection going on, since the full set of 8 A-B pairs

are available for trade all the time. Different panels of Table 5 correspond to the cases when

the open positions are held for 5, 10, and 15 trading days, respectively.

The first row in each panel reports the before-cost Sharpe ratios for the committed-capital

strategy. When trading ordinary pairs, all Sharpe ratios fall in the range between 1 and 1.9,

which is in line with previous studies. GGR report only marginally higher Sharpe ratios when

studying a different market (the U.S.) and a different time period (1962-2002). Do and Faff

(2010), who study the same strategies as GGR using U.S. data, report similar Sharpe ratios

to ours for the subperiods that overlap with our sample period. When trading A-B pairs, the
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Sharpe ratios fall in the range between 2.6 and 3.0. That is, before-cost Sharpe ratios from

trading A-B pairs are considerably higher than what can be attained when trading ordinary

pairs.

We also consider the effect of transaction costs in Table 5. At least three types of costs

emerge when implementing a pairs trading strategy: commissions, short selling fees, and

the implicit cost of market impact (Do and Faff (2012)). The effect of commissions and

market impact needs to be considered whenever a position is initiated or closed in a given

stock. Since one complete pairs trade involves two round-trips, the associated transaction

cost will be four times the per-stock one-way cost (commission plus market impact). Do

and Faff (2012), who study the transaction costs associated with pairs trading in the U.S.,

estimate the average one-way cost to be around 30 bps in the period 1989-2009. Do and

Faff (2012) also take into account short-selling fees by including a constant loan fee of 1%

per annum payable over the life of a given pairs trade. In our empirical implementation we

ignore the short-selling fees, since they are negligible compared to the other costs according

to the estimates of Do and Faff (2012), and deduct two times the one-way cost both at the

initiation and at the close of each pairs trade to calculate the after-cost return corresponding

to each strategy.21

The second and third row in each panel of Table 5 report the after-cost Sharpe ratios

for the committed-capital strategies. Specifically, we consider both a low-cost case, with a

one-way cost of 10 bps, as well as the 30 bps one-way cost estimated by Do and Faff (2012).

With a 10 bps one-way cost, ordinary pairs earn Sharpe ratios between 0.7 and 1.4, while

trading A-B pairs leads to Sharpe ratios around 2. That is, when transaction costs are low,

pairs trading still performs considerably better in the case of A-B pairs. However, when the

one-way cost is 30 bps, all Sharpe ratios decrease dramatically: for the ordinary pairs the

21Since short selling fees are assumed to be proportional to the length of the trade, they are relatively small
for strategies with short holding periods. For example, the 1% annual loan fee considered by Do and Faff
(2012) translates into 2 bps for the strategy that holds each position for 5 trading days. The one-way cost of
30 bps is realistic according to Do and Faff (2012), who consider typical institutional investors who trade on
the U.S. market. If actual transaction costs in Sweden are higher than those in the U.S., the transaction-cost
adjusted Sharpe ratios become even smaller.
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Sharpe ratios are never above 0.3 and for the A-B pairs the Sharpe ratios are close to zero or

negative.22 That is, when a realistic level of transaction costs is used, the returns from pairs

trading are greatly reduced or extinguished. This is particularly true for the A-B pairs.

Table 5 also shows the average price deviation that triggers a pairs trade (i.e., the average

two standard deviation outcome of the price differences), as well as how often the pairs trade.

For the ordinary pairs, the average trigger is about 10 percent.23 For the A-B pairs, the

average trigger is much smaller, at around two percent. On average, an ordinary pair trades

around 1.3 times per 6-month period, whereas the A-B pairs trade a bit more often at around

2 times per 6 months.

There are some key differences between the Sharpe ratios reported in the first row of each

panel in Table 5 and the ones we study in the theoretical section. The empirical (annualized)

Sharpe ratios of Table 5 correspond to the monthly returns from trading a portfolio of pairs,

where each “manager’s” capital earns zero returns when not invested in a pair. On the other

hand, in the theoretical analysis we study per-trade Sharpe ratios from trading a single pair.

In order to be closer to our theoretical analysis and to provide more details regarding the

differences between A-B pairs and ordinary pairs, we therefore also report statistics for the

per-trade returns. That is, the final three rows in each panel of Table 5 report the mean and

standard deviation of all per-trade returns, along with the per-trade annualized Sharpe ratios.

The latter are simply defined as the ratios of the average per-trade returns over the standard

deviation of the per-trade returns, scaled to an annual basis. These per-trade Sharpe ratios

are thus direct empirical proxies for the theoretical Sharpe ratios derived earlier in the paper.

The per-trade return statistics further emphasize that trading A-B pairs leads to considerably

22Schultz and Shive (2010) analyze a form of pairs trading in U.S. dual-class shares, which should be
similar to the A-B shares in our sample, and find that such strategies can yield substantial returns. In their
study, they take into account bid-ask spreads but not other trading costs. Their results might therefore be
most comparable to our low-transaction cost scenario; for instance, Jones (2002) reports average half-spreads
around 10 bps on Dow Jones stocks in the year 2000, which is in the middle of the sample period (1993-2006)
used by Schultz and Shive (2010).

23This average opening trigger is larger than the average 5 percent trigger in GGR, but quite similar to
what is found by Do and Faff (2012), who consider a number of different pair formations and report an
average opening spread around 8 percent across all pairs over the sample period 1989-2009.
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higher Sharpe ratios than trading ordinary pairs. For each holding period, the annualized

Sharpe ratios for the A-B pairs are more than three times higher than the respective Sharpe

ratios for the ordinary pairs. The mean return for a given pairs trade is around 1.2%, for both

ordinary- and A-B pairs, and the differences in Sharpe ratios are almost entirely driven by

a much greater variance in the ordinary pairs returns. Since the full round-trip transaction

cost for a pairs trade is 120 bps (when the one-way cost per stock is 30bps), this level of

transaction costs effectively wipes out almost all of the returns, as seen in the after-cost

Sharpe ratios for the committed-capital strategy in Table 5 (row 3 in each panel).

Overall, the properties of the A-B pairs trading returns line up reasonably well with the

implications from the theoretical analysis. Pre-cost Sharpe ratios are large (upwards of 6.0 on

a per-trade basis), and not dissimilar from the theoretical ones obtained under cointegration.

However, given the small spreads that trigger a trade and the subsequent small returns, the

after-cost Sharpe ratios are close to zero, consistent with the discussion around Corollary 1

in Section III.D.24 In practice, there are likely arbitrageurs that perform some form of pairs

trading on the A-B pairs, essentially enforcing the no-arbitrage relationship between them. If

these arbitrageurs are able to trade at relatively low transaction costs, such trading might be

profitable, and these profits might provide a fair return on the investments in infrastructure

needed to trade at low costs.

In contrast, the per trade Sharpe ratios for the ordinary pairs are much smaller than

those for the A-B pairs, while the trigger spreads for the ordinary pairs are much larger

than for the A-B pairs. Pairs-trading in ordinary pairs is profitable before costs, but the

after-cost Sharpe ratios for these pairs also approach zero for reasonable transaction costs.

This is consistent with ordinary pairs not being cointegrated, since under cointegration the

large opening spreads should also translate into large expected returns, which should survive

24The small spreads between the A-B prices suggest a very high correlation between the innovations to
the two processes, such that the two processes are affected by almost identical shocks (see Section III.D). To
empirically assess the correlations between innovations for the ordinary pairs and the A-B pairs, we used the
innovations from VMA(5) estimations of the pairwise price processes and calculated their correlation for all
the pairs in our sample. The correlations are all in the range 0.9 to 0.98 for A-B pairs, whereas they are all
below 0.68 for ordinary pairs.
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transactions costs quite easily (again, see the discussion in Section III.D).

B. Empirical Evidence of Cointegration

We finally turn to an empirical evaluation of pairwise cointegration of stock prices. There

is a long econometric tradition of testing for cointegration among economic time series.

However, the formal evaluation of long-run relationships, like cointegration, is fraught with

difficulties and several decades of empirical research has produced few solid empirical “facts”.

Therefore, instead of attempting to provide a yes/no answer to the question of stock price

cointegration using formal tests, we adopt a more gradual empirical strategy, where we try to

quantify whether pairs of stocks are “close to” or “far from” being cointegrated. We make use

of the implicit restrictions of cointegration discussed in Section II.C, and analyze how close

these restrictions are to being satisfied in the case of ordinary stock pairs. We compare the

results from ordinary pairs to the control group of A-B pairs, which, at a minimum, should

be “close to” cointegrated. Similar to the previous empirical section, the sample consists of

8 A-B pairs and 488 ordinary pairs. The sample period is from January 1995 to December

2014.

The first restriction implied by cointegration, shown in equation (11), is on the long-run

MA matrix, C (1), and reads as

(26) ψ12 = 1 + ψ22 and ψ21 = 1 + ψ11 .

To study this restriction, we estimate VMAs of orders q ∈ {1, 3, 5} for each possible pair of

stocks in our sample and then calculate

(27) dC ≡
(ψ12 − ψ22) + (ψ21 − ψ11)

2
.

For a pair of cointegrated stock prices the value of dC should be close to one. The histograms

in each graph of Figure 3 describe the distribution of dC for ordinary stock pairs. The ×
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Figure 3: Cointegration Restrictions on the VMA Coefficients
The graphs present the distribution of dC from equation (27) in our sample. The histograms in each graph represent

the distribution of dC for ordinary stock pairs (488 pairs). The × markers correspond to the A-B pairs (8 pairs). The

separate graphs correspond to the order of the estimated VMA(q) process with q ∈ {1, 3, 5}.
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markers represent the A-B pairs in the sample. The ordinary pairs are clearly separated from

the A-B pairs in all graphs of Figure 3. In the case of ordinary stock pairs, dC is never above

0.31, while all dC values lie between 0.5 and 0.8 in case of the A-B pairs. The value of dC

does not actually reach 1 even for the A-B pairs, corroborating our earlier argument that the

formal validation of cointegration is very hard as well as the possibility that the A-B pairs

are not perfectly cointegrated. Our key empirical observation is that the coefficient estimates

are much further away from satisfying the cointegrating restrictions for all the ordinary pairs

than for any of the A-B pairs.

The second restriction we investigate is on the long-run covariance matrix of returns, Ω,

and is shown in equation (14). Cointegration implies that all four elements of Ω are identical.

In order to evaluate this restriction, we first estimate the long-run covariance matrix for all

possible pairs in the sample using the Newey and West (1987) estimator with lag lengths

l ∈ {10, 25}. The following statistic is subsequently calculated for each pair:

(28) dΩ ≡
∣∣∣∣ln(ω21

ω11

)∣∣∣∣+

∣∣∣∣ln(ω22

ω11

)∣∣∣∣ .
The value of dΩ is zero under cointegration and positive otherwise. The histograms in Figure 4
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Figure 4: Cointegration Restrictions on the Long-Run Covariance Matrix
The graphs present the distribution of dΩ from equation (28) in our sample. The histograms in each graph represent

the distribution of dΩ for ordinary stock pairs (488 pairs). The × markers correspond to the A-B pairs (8 pairs). The

separate graphs correspond to the lag length of the estimator with l ∈ {10, 25}.
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describe the distribution of dΩ for ordinary stock pairs, while the × markers correspond to

the A-B pairs. The ordinary pairs are clearly separated from the A-B pairs again, as dΩ for

all the ordinary pairs lies further away from satisfying the cointegrating restrictions than for

any of the A-B pairs.

To be clear, Figures 3 and 4 show the values of dC and dΩ, respectively, for all ordinary

pairs that can be formed in our sample of stocks. Most of these pairs would clearly not

be strong candidates for pairs trading, according to any selection criterion, and clearly one

should not expect all of these pairs to be cointegrated. Rather, the main message of Figure 3

and Figure 4 is that none of these ordinary pairs are anywhere near as close to satisfying the

cointegration restrictions as any of the A-B pairs. As emphasized previously, the A-B pairs

are likely close to cointegrated (see also Footnotes 18 and 19), and one can view the outcomes

of the A-B pairs as a form of calibration result against which to compare the ordinary pairs.

The clear separation between the ordinary pairs and the A-B pairs therefore strongly suggest

that none of the ordinary pairs are cointegrated.

38



V. Conclusion

Cointegration of certain pairs of stock prices provides a seemingly simple and clear

explanation for why pairs trading would be profitable. However, cointegration among stock

prices turns out to be a very powerful concept. In a theoretical analysis, we show that

cointegration among stock prices would imply annualized Sharpe ratios that could easily

exceed 10, for a single pair, in a simple pairs trading strategy. This result suggest either (i)

that cointegration among ordinary stocks is very unlikely, or (ii) that the transient component

in stock prices is longer-lived (i.e., returns exhibit longer serial correlation) than is usually

believed. In an empirical analysis, we attempt to distinguish between these two possible

explanations, and find strong evidence in favour of the first conjecture. Namely, that stock

prices are very rarely cointegrated.

In conclusion, our study suggests that cointegration is probably not the right starting

point when trying to understand pairs trading. Instead, one needs to consider weaker

concepts, and/or accept that pairs trading opportunities are likely of a transient nature,

which do not fit well into a model of a permanent long-run relationship as stipulated by

cointegration.
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A. Simulation Procedure

The steps of the simulation are as follows.

1. We start simulating values of ∆yt using the model in equation (1) and, at the same

time, also create yt = ∆yt+yt−1 and β′yt values. For starting values we use εt = 0 for all

t ≤ 0 and y0 = 1. The innovations, εt, are drawn from an iid normal distribution. For a

given h (j) function, the cj coefficients are specified according to equation (A35), with

a = d = 0.1
H∞

. This parametrization keeps the long-run VMA matrix, C (1), identical

across different specifications of h (j). As seen in Theorem 2, the distribution of the

Sharpe ratios is, in fact, invariant to the values of a and d. This result is also confirmed

for the simulated Sharpe ratios in simulations not reported in the paper.

2. After simulating the first 105 periods, we estimate the unconditional standard deviation

of the difference between the two price processes, i.e., σβ′y =
√
V ar(β′yt).

3. We continue to simulate ∆yt, yt, and β′yt values for 106 more periods, and use these

realizations to estimate the number of initiated trades. A pairs trade is first initiated

when |β′yt| > 2σβ′y. If the pair converges during p periods (the holding-period), the

pair is eligible to trade again immediately after the p periods. If the pair does not

converge during p periods, it becomes eligible for trading only after it has converged.

Once the pair is eligible for trading, the next pairs trade is initiated when |β′yt| > 2σβ′y

again. We count the number of initiated trades over the 106 simulated periods and

scale the result so that it corresponds to a 6-month interval (125 trading periods).

4. We continue simulating ∆yt, yt, and β′yt values until the condition rσβ′y − ε < β′yτ <

rσβ′y + ε is met at a given time period τ . This is when one particular pairs trade is

initiated. We use r ∈ {−1,−2}, corresponding to one- and two standard deviation

strategies, respectively, and we set ε = 5 · 10−4. We record the p-period return after

the pairs trade is initiated, defined as rτ→τ+p =
∑p

j=1 ∆β′yτ+j for p = 1, ..., 250. We
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also record the number of periods needed until the two price processes converge, i.e.,

we find the first τ ′ such that β′yτ ′ > 0 and τ ′ > τ , and record τ ′ − τ .

5. We repeat step 4. until we have observations from N = 106 initiated pairs trades. The

p-period returns from these N different simulated pairs trades enable us to calculate

the Et[rt→t+p], V art(rt→t+p), and SRt(rt→t+p) values. The recorded time to convergence

values enable us to produce the plots with the percentage of converged trades.

In Appendix B we also provide simulation results in a VAR setting. The procedure is the

same as the one described above, with the only difference that the ∆yt values are simulated

from the VAR model in equation (A2).

B. Pairs Trading Returns in a VAR Setting

We consider the VAR(1) case, and focus on one-period pairs trading returns. Suppose the

bivariate prices, yt = (y1,t, y2,t)
′, are generated according to a cointegrated VAR(1) process,

(A1) yt = Π1yt−1 + εt.

The vector error correction model (VECM) format is given by

(A2) ∆yt = Πyt−1 + εt,

with Π = Π1 − I. By standard results, if yt is cointegrated with vector β, one can write

Π = αβ′, for some vector α = (α1, α2), such that

(A3) β′yt = (β′ + β′αβ′) yt−1 + β′εt = (1 + β′α) β′yt−1 + β′εt
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and

(A4) ∆yt = αβ′yt−1 + εt.

For β = (1,−1) ,

(A5) β′α = α1 − α2 = − (α2 − α1) ≡ −γ.

Let wt ≡ β′yt = y1,t − y2,t be the difference between the two (cointegrated) price processes,

and define ξt ≡ β′εt. The price difference wt then follows an AR(1) process,

(A6) wt = (1− γ)wt−1 + ξt.

Under cointegration, this process must be stationary, which holds for |1− γ| < 1, or equivalently,

γ ∈ (0, 2).

The returns on the one-period pairs trading strategy is given by

(A7) rt→t+1 ≡ ∆β′yt+1 = β′αβ′yt + β′εt+1.

The conditional expectation and conditional variance at time t are given by

Et [rt→t+1] = Et [β′αβ′yt + β′εt+1] = β′αβ′yt = −γ (β′yt)(A8)

V art (rt→t+1) = V ar (β′εt+1) = β′V ar (εt+1) β = β′Σβ.

The unconditional variance of β′yt is given by

V ar (β′yt) = V ar ((1 + β′α) β′yt−1) + V ar (β′εt)(A9)

= (1− γ)2 V ar (β′yt−1) + β′Σβ
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Table A1: Properties of Pairs-Trading in the VAR(1) Model.
γ 0.008 0.01 0.02 0.05 0.10 0.20 0.50 0.99

SRann 2.00 2.24 3.18 5.06 7.25 10.54 18.26 31.31

By stationarity of the cointegrating relationship, V ar (β′yt) = V ar (β′yt−1), and thus

(A10) V ar (β′yt) =
β′Σβ

1− (1− γ)2 =
β′Σβ

γ (2− γ)
.

The Sharpe ratio for the pairs trading strategy is then equal to

(A11) SRt,t→t+1 =
Et [rt→t+1]√
V art (rt→t+1)

= −γ (β′yt)√
β′Σβ

.

If one sets the price deviation, β′yt, equal to two standard deviations,

(A12) − β′yt = 2
√
V ar (β′yt) = 2

√
β′Σβ

γ (2− γ)
,

it follows that

(A13) SRt,t→t+1 = −γ (β′yt)√
β′Σβ

= 2
γ
√

β′Σβ
γ(2−γ)√
β′Σβ

= 2

√
γ

(2− γ)
.

In the VAR framework outlined above, the difference between the two cointegrated price

processes follow an AR(1) process with the AR-parameter given by 1 − γ. For γ close to

zero, the difference between the two prices is almost non-stationary, and their convergence

towards each other is slow. For γ close to one, there is little persistence in the difference

between the prices, and convergence happens quickly. The parameter γ thus plays a similar

role here, to the role of q in the VMA setting. Table A1 shows the annualized Sharpe ratios,

across different values of γ, for a two standard deviation strategy with a one-day holding

period. The results in the table highlight that the Sharpe ratio of the pairs trading strategy

quickly becomes very large as γ drifts away from zero.
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Figure A1: Properties of a Two Standard Deviation Strategy for VMA and VAR Processes

VMA specifications VAR specifications
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In order to more directly compare the VMA and VAR formulations, Figure A1 shows the

convergence properties and Sharpe ratios of a two standard deviation pairs trading strategy

under VMA specifications (graphs on the left) and VAR specifications (graphs on the right).

The results in the figure are based on simulations. For the VMA specifications, we pick

q = 250 and h (j) = {1, 1/j0.5, 1/j, 1/j2}; that is, we reproduce the exact same results as

in the right column of Figure 1. For the VAR specifications, the γ = {0.008, 0.01, 0.02, 0.5}

values are chosen such that the convergence properties of the trading strategy for each value

is similar to the convergence properties of one of the VMA specifications. As shown in the top

graphs of Figure A1, the percentage of converged trades shows a similar pattern for specific

pairs of VMA and VAR specifications. The corresponding pairs trading Sharpe ratios are

shown in the two bottom graphs, and the main take-away of Figure A1 is that VMA and

VAR specifications with similar convergence patterns also have similar Sharpe ratios.

C. Proofs and Additional Theorems

Proof of Theorem 1. Under the presence of cointegration, the q-period pairs trading

returns are equal to

(A14) rt→t+q ≡
q∑

k=1

∆β′yt+k = −β′
q∑

k=1

∆ε̃t+k = −β′ (ε̃t+q − ε̃t) .
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In the general VMA (∞) case, ε̃t =
∑∞

j=0 c̃jεt−j, and

ε̃t+q − ε̃t =
∞∑
j=0

c̃jεt+q−j −
∞∑
j=0

c̃jεt−j(A15)

= (c̃0εt+q + c̃1εt+q−1 + ...+ c̃q−1εt+1 + c̃qεt + c̃q+1εt−1 + ...)

− (c̃0εt + c̃1εt−1 + c̃2εt−2 + c̃3εt−3 + ...)

= c̃0εt+q + c̃1εt+q−1 + ...+ c̃q−1εt+1

+ (c̃q − c̃0) εt + (c̃q+1 − c̃1) εt−1 + (c̃q+2 − c̃2) εt−2 + ...

=

q−1∑
k=0

c̃kεt+q−k +
∞∑
j=0

(c̃j+q − c̃j) εt−j.

Further, c̃j =
∑∞

s=j+1 cs, which gives,

(A16) c̃j+q − c̃j =
∞∑

s=j+1+q

cs −
∞∑

s=j+1

cs = − (cj+1 + cj+2 + ...+ cj+q) = −
q∑

k=1

cj+k,

and

(A17) ε̃t+q − ε̃t =

q−1∑
k=0

c̃kεt+q−k −
∞∑
j=0

(
q∑

k=1

cj+k

)
εt−j.

That is,

(A18) rt→t+q = −β′ (ε̃t+q − ε̃t) = −β′
(
q−1∑
k=0

c̃kεt+q−k −
∞∑
j=0

(
q∑

k=1

cj+k

)
εt−j

)
.

The conditional variance at time t of rt→t+q is thus equal to,

(A19)

V art (rt→t+q) = V art

(
−β′

(
q−1∑
k=0

c̃kεt+q−k

))
= β′

q−1∑
k=0

V ar (c̃kεt+q−k) β =

q−1∑
k=0

(β′c̃kΣc̃
′
kβ) .
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Similarly, the conditional expectation at time t is given by

Et [rt→t+q] = Et

[
−β′

(
q−1∑
k=0

c̃kεt+q−k −
∞∑
j=0

(
q∑

k=1

cj+k

)
εt−j

)]
(A20)

= β′

(
∞∑
j=0

(
q∑

k=1

cj+k

)
εt−j

)
.

Note that (with initial conditions set to zero),

(A21) β′yt = −β′ε̃t = −β′
∞∑
j=0

c̃jεt−j = −β′
∞∑
j=0

∞∑
s=j+1

csεt−j.

Suppose now that we have a finite VMA (q) model. In that case, cj = 0 for j > q. Thus,

β′yt = −β′
∞∑
j=0

∞∑
s=j+1

csεt−j = −β′
q−1∑
j=0

q∑
s=j+1

csεt−j

= −β′
q−1∑
j=0

q−j∑
k=1

cj+kεt−j = −Et [rt→t+q] ,(A22)

since

(A23) Et [rt→t+q] = β′

(
∞∑
j=0

(
q∑

k=1

cj+k

)
εt−j

)
= β′

(
q−1∑
j=0

q−j∑
k=1

cj+kεt−j

)
.

The unconditional variance of β′yt, in the VMA (q) case, is given by

(A24) V ar (β′yt) = V ar (β′ε̃t) = β′V ar

(
q−1∑
j=0

c̃jεt−j

)
β =

q−1∑
j=0

β′c̃jΣc̃
′
jβ = V art (rt→t+q) .

Theorem A1 Suppose ∆yt = µ+ut = µ+C (L) εt is a k×1 dimensional returns process, with

εt ≡ iid (0,Σ) , C (L) =
∑∞

j=0 cjL
j, and C (1) 6= 0. The corresponding price process is given by

yt, and the (one-period) returns on the pairs trading strategy is defined as rt→t+1 ≡ ∆β′yt+1.

If yt is cointegrated with cointegration vector β, the following results hold.
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i. The time t conditional expected one-period return is given by

(A25) Et [rt→t+1] = −β′yt − β′
∞∑
j=0

c̃j+1εt−j = β′
∞∑
j=0

cj+1εt−j.

ii. The time t conditional variance of the one-period return is given by

(A26) V art (rt→t+1) = β′Σβ.

iii. The time t conditional Sharpe ratio for the one-period return is given by

(A27) SRt→t+1 =
Et [rt→t+1]√
V art (rt→t+1)

=
−β′yt − β′

∑∞
j=0 c̃j+1εt−j√

β′Σβ
=
β′
∑∞

j=0 cj+1εt−j√
β′Σβ

.

Proof of Theorem A1. From the proof of Theorem 1,

(A28) rt→t+1 = −β′ (ε̃t+1 − ε̃t) = −β′
(
c̃0εt+1 −

∞∑
j=0

cj+1εt−j

)
,

where the last equality uses equation (A17). The conditional variance at time t is then equal

to,

(A29) V art (rt→t+1) = V art

(
−β′

(
c̃0εt+1 −

∞∑
j=0

cj+1εt−j

))
= V art (β′c̃0εt+1) ,

Further, c̃0 =
∑∞

s=1 cs = C (1)− I and β′C (1) = 0, resulting in

(A30) V art (rt→t+1) = V art (β′ (C (1)− I) εt+1) = β′V ar (εt+1) β = β′Σβ.

The conditional expectation at time t is given by

(A31) Et [rt→t+1] = Et

[
−β′

(
c̃0εt+1 −

∞∑
j=0

cj+1εt−j

)]
= β′

∞∑
j=0

cj+1εt−j.
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Alternatively, by equation (8) with initial conditions equal to zero, β′yt = −β′ε̃t, and

Et [rt→t+1] = Et [−β′ (ε̃t+1 − ε̃t)] = β′ε̃t − Et [β′ε̃t+1](A32)

= −β′yt − Et

[
β′
∞∑
j=0

c̃jεt−j+1

]
= −β′yt − β′

∞∑
j=0

c̃j+1εt−j.

Proof of Theorem 2. Note that

(A33)

C (1) =
∞∑
j=0

cj = I +
∞∑
j=0

h (j)

 a b

c d

 ≡ I +H∞

 a b

c d

 =

 1 + aH∞ bH∞

cH∞ 1 + dH∞

 .
Under cointegration with vector β = (1,−1)′, C (1) must satisfy the restrictions in (11),

which implies that the following parameter restrictions apply,

(A34) b =
1

H∞
+ d, and c =

1

H∞
+ a.

Thus, without loss of generality, we can write

(A35) cj = h (j)

 a b

c d

 = h (j)

 a 1
H∞

+ d

1
H∞

+ a d

 .
By Theorem A1,

(A36) V art (rt→t+1) = β′Σβ =

[
1 −1

] σ11 σ12

σ12 σ22


 1

−1

 = σ11 + σ22 − 2σ12.

Using equation (A31) in the proof of Theorem A1, the Sharpe ratio can then be written as

(A37) SRt→t+1 =
β′
∑∞

j=0 cj+1εt−j√
σ11 + σ22 − 2σ12

.
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The denominator in this Sharpe ratio is a constant. This reflects the fact that the time t

variance of the pairs trading returns is constant across time and does not depend on the

current state of the price processes. Plugging in for the above parametrization of cj and

β = (1,−1)′ ,

SRt→t+1 =

[
1 −1

] a 1
H∞

+ d

1
H∞

+ a d

∑∞j=0 h (j + 1) εt−j

σ11 + σ22 − 2σ12

(A38)

=

[
− 1
H∞

1
H∞

]∑∞
j=1 h (j) εt−j+1

σ11 + σ22 − 2σ12

If εt is iid N (0,Σ), it follows that
∑∞

j=1 h (j) εt−j+1 is also normally distributed with mean

zero and variance

(A39) V ar

(
∞∑
j=1

h (j) εt−j+1

)
=
∞∑
j=1

h (j)2 Σ ≡ ΣH(2)
∞ =

 σ11 σ12

σ12 σ22

H(2)
∞ ,

with H
(2)
∞ ≡

∑∞
j=1 h (j)2 . The numerator in the Sharpe ratio in equation (A38) is thus

normally distributed with mean zero and variance,

V ar


 − 1

H∞

1
H∞


′
∞∑
j=1

h (j) εt−j+1

 =

 − 1
H∞

1
H∞


′  σ11 σ12

σ12 σ22

H(2)
∞

 − 1
H∞

1
H∞

(A40)

=
H

(2)
∞

H2
∞

(σ11 + σ22 − 2σ12) .

The Sharpe Ratio is then distributed as

(A41) SRt→t+1 ∼
N
(

0, H
(2)
∞

H2
∞

(σ11 + σ22 − 2σ12)
)

√
σ11 + σ22 − 2σ12

= N

(
0,
H

(2)
∞

H2
∞

)
.
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Proof of Corollary 1. Using equation (8), and the definition of c̃j in equation (6),

(A42) V ar (β′yt) = V ar (β′ε̃t) =

(
∞∑
j=0

β′c̃jΣc̃
′
jβ

)
=

(
∞∑
j=0

(
∞∑

s=j+1

β′cs

)
Σ

(
∞∑

s=j+1

c′sβ

))
.

By the proof of Theorem 2, it must hold that cj = h (j)

 a 1
H∞

+ d

1
H∞

+ a d

. For β =

(1,−1), it follows that β′cs = h (s)

[
− 1
H∞

1
H∞

]
and

V ar (β′yt)(A43)

=

[
− 1
H∞

1
H∞

]( ∞∑
j=0

[(
∞∑

s=j+1

h (s)

)
Σ

(
∞∑

s=j+1

h (s)

)]) − 1
H∞

1
H∞


=

[
− 1
H∞

1
H∞

] σ11 σ12

σ12 σ22


 − 1

H∞

1
H∞

( ∞∑
j=0

[(
∞∑

s=j+1

h (s)

)(
∞∑

s=j+1

h (s)

)])

=
1

H2
∞

(σ11 + σ22 − 2σ12)
∞∑
j=0

( ∞∑
s=j+1

h (s)

)2


= (σ11 + σ22 − 2σ12)
∞∑
j=0


(∑∞

s=j+1 h (s)
)2

(
∑∞

s=1 h (s))
2

 ,
where the last equality follows from the definition H∞ ≡

∑∞
j=1 h (j).
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